Step 1) Solve the first equation for #x#:
#1/2x - 2y = 4#
#color(red)(2)(1/2x - 2y) = color(red)(2) * 4#
#(color(red)(2) * 1/2x) - (color(red)(2) * 2y) = 8#
#color(red)(2)/2x - 4y = 8#
#1x - 4y = 8#
#x - 4y + color(red)(4y) = 8 + color(red)(4y)#
#x - 0 = 8 + 4y#
#x = 8 + 4y#
Step 2) Substitute #(8 + 4y)# for #x# in the second equation and solve for #y#:
#4x + y = 2# becomes:
#4(8 + 4y) + y = 2#
#(4 * 8) + (4 * 4y) + y = 2#
#32 + 16y + y = 2#
#32 + 16y + 1y = 2#
#32 + (16 + 1)y = 2#
#32 + 17y = 2#
#32 - color(red)(32) + 17y = 2 - color(red)(32)#
#0 + 17y = -30#
#17y = -30#
#(17y)/color(red)(17) = -30/color(red)(17)#
#(color(red)(cancel(color(black)(17)))y)/cancel(color(red)(17)) = -30/17#
#y = -30/17#
Step 3) Substitute #-30/17# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:
#x = 8 + 4y# becomes:
#x = 8 + (4 * -30/17)#
#x = 8 + (-120/17)#
#x = 8 - 120/17#
#x = (17/17 * 8) - 120/17#
#x = 136/17 - 120/17#
#x = 16/17#
The Solution Is:
#x = 16/17# and #y = -30/17#
Or
#(16/17, -30/17)#