Step 1) Solve the second equation for #y#:
#4x + y - color(red)(4x) = 10 - color(red)(4x)#
#4x - color(red)(4x) + y = 10 - color(red)(4x)#
#0 + y = 10 - 4x#
#y = 10 - 4x#
Step 2) Substitute #color(red)(10 - 4x)# for #y# in the first equation and solve for #x#:
#3x + 5(10 - 4x) = 5#
#3x + 50 - 20x = 5#
#3x - 20x + 50 = 5#
#-17x + 50 = 5#
#-17x + 50 + color(red)(17x) - color(blue)(5) = 5 + color(red)(17x) - color(blue)(5)#
#-17x + color(red)(17x) + 50 - color(blue)(5) = 5 - color(blue)(5) + color(red)(17x)#
#0 + 50 - 5 = 0 + 17x#
#45 = 17x#
#45/color(red)(17) = (17x)/color(red)(17)#
#45/17 = (color(red)(cancel(color(black)(17)))x)/cancel(color(red)(17))#
#45/17 = x#
#x = 45/17#
Step 3) Substitute #color(red)(45/17)# for #x# in the solution to the second equation at the end of Step 1:
#y = 10 - (4 xx 45/17)#
#y = (17/17 xx 10) - (180/17)#
#y = 170/17 - 180/17#
#y = -10/17#
The solution is: #x = 45/17#, #y = -10/17# or #(45/17, -10/17)#