How do you solve the following system: #4x + y = -1 , 5x - 7y = 12 #?

1 Answer
Apr 13, 2018

Answer:

#x=5/33#
#y=-5/3#
#(5/33, -5/3)#

Explanation:

#4x+y=-1#, #5x-7y=12#
Take the first equation, #4x+y=-1#, and isolate #y#:
#y=-4x-1#. We can substitute this value into the second equation:
#5x-7(-4x-1)=12#. Distribute the parentheses:
#5x+28x+7=12# Combine like terms, isolate #x# and coeffecient:
#33x=5# Isolate #x#:
#x=5/33# Input this value into the first equation:
#4(5/33)+y=-1# Distribute #y#
#20/33+y=-1# Isolate #y#
#y=-55/33#
#y=-5/3#