How do you solve the pair of equations #1/2x+1/3y=2# and #1/(3x) + 1/(2y) = 13/6# by reducing them to a pair of linear equations?

2 Answers
Aug 11, 2016

See explanation

Explanation:

#color(brown)("Reduction of an equation "->" rewriting in a simpler form")#

Consider #1/(3x)+1/(2y)=13/6#

#1/(2y)=13/6-1/(3x)#

#1/(2y)=(13x-2)/(6x)#

Turn the whole thing upside down

#2y=(6x)/(13x-2)#

#y=(6x)/(2(13x-2)) = (3x)/(13x-2)#....................Equation(1)

Not sure the above is in a 'simpler form'!
,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Consider:#" "x/2+y/3=2#

#y/3=2-x/2#

#y=-3/2x+6# ...................................Equation(2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Equating both through y

#-3/2x+6=y=(3x)/(13x-2)#

#-3/2x+6=(3x)/(13x-2)#

Multiply both sides by 2

#-3x+12=(6x)/(13x-2)#

Multiply both sides by #(13x-2)#

#(-3x+12)(13x-2)=6x#

#-39x^2+162x-24=6x#

#-39x^2+156x-24=0#

Divide throughout by 3

#-13x^2+52-8=0#

#x=(-b+-sqrt(b^2-4ac))/(2a)#

#=>x=(-52+-sqrt( 2704-4(-13)(-8)))/(2(-13))#

#x=2+-sqrt(2288)/(-26)#

Factors of 2288 are #4^2xx143#

#x=2+-4sqrt(143)/(-26)#

I am running out of time so I will let you take it from hear

Aug 11, 2016

#x/2+y/3=2->3x+2y=12#
#1/(3x)+1/(2y)=13/6->3x+2y=13 xy# then #13 xy = 12#

Now

#13/3y(3x+2y=12)-> 13 xy +26/3y^2=52y#
#->26/3y^2-52y+12 = 0#

Solving for #y# gives

#y = 3/13 (13 pm sqrt[143])#

substituting in #13 xy = 12# gives

#x = 4/(13pmsqrt[143])#

pairing we have

#((x = 4/(13 + sqrt[143]),y = 3/13 (13 + sqrt[143])), (x = 4/(13 - sqrt[143]),y =3/13 (13 - sqrt[143]) ))#