How do you solve the system of equations #13x + 23y = - 89# and #10x - 14y =90#?

2 Answers
May 4, 2018

#color(green)(x = 2, y = -5#

Explanation:

#13x + 23y = -89, " Eqn (1)"#

#10x - 14y = 90, " Eqn (2)"#

#130 x + 230 y = - 890, " Multiply Eqn (1) by 10", color(red)(" Eqn (3)"#

#130 x - 182 y = 1170, " Multiply Eqn (2) by 13", color(red)(" Eqn (4)"#

#cancel(130x) + 230 y - cancel(130x) + 182 y = -890 - 1170, color(red)(" subtracting Eqn (4) from Eqn (3)"#

#412 y = -2060,color(blue)( y = -5#

Substituting value of y in Eqn (1),

#13x + (23 * -5) = -89#

#13 x = - 89 + 115#

#color(blue)(x = 26 / 13 = 2#

May 4, 2018

#x=2#
#y=-5#

Explanation:

Given -

#13x+23y=-89# ----------(1) #xx 10#
#10x-14y=90# ----------(2) #xx 13#

#130x +230y=-890# ------- (3)
#130x-182y=1170# -------(4) ----#(3)-(4)#

#412y=-2060#

#y=(-2060)/(412)=-5#

#y=-5#

Substitute #y=-5# in equation (1)

#13x+23(-5)=-89#

#13x-115=-89#

#13x=-89+115=26#

#x=26/13=2#

#x=2#

enter image source here