Step 1) Solve the first equation for #y#:
#14x + y = 15#
#-color(red)(14x) + 14x + y = -color(red)(14x) + 15#
#0 + y = -14x + 15#
#y = -14x + 15#
Step 2) Substitute #-14x + 15# for #y# in the second equation and solve for #x#:
#14x + 13y = 5# becomes:
#14x + 13(-14x + 15) = 5#
#14x + (13 xx -14x) + (13 xx 15) = 5#
#14x - 182x + 195 = 5#
#(14 - 182)x + 195 = 5#
#-168x + 195 = 5#
#-168x + 195 - color(red)(195) = 5 - color(red)(195)#
#-168x + 0 = -190#
#-168x = -190#
#(-168x)/color(red)(-168) = (-190)/color(red)(-168)#
#(color(red)(cancel(color(black)(-168)))x)/cancel(color(red)(-168)) = 95/84#
#x = 95/84#
Step 3) Substitute #95/84# for #x# in the solution to the first equation at the end of Step 1 and calculate #y#:
#y = -14x + 15# becomes:
#y = (-14 xx 95/84) + 15#
#y = -1330/84 + (84/84 xx 15)#
#y = -1330/84 + (84/84 xx 15)#
#y = -1330/84 + 1260/84#
#y = -70/84#
The solution is: #x = 95/84# and #y = -70/84# or #(95/84, -70/84)#