How do you solve the system of equations #2x^4+y^2=10# and #x^2+2y^4=10#?

1 Answer
Jul 17, 2018

The solutions are #S={(sqrt2,sqrt2), (sqrt2,-sqrt2), (-sqrt2,sqrt2),(-sqrt2,-sqrt2)}#

Explanation:

Solve this equation by substitution

#{(2x^4+y^2=10),(x^2+2y^4=10):}#

As the equations are symmetric, we can assume that #x=y#

Therefore,

#2x^4+x^2=10#

#2x^4+x^2-10=0#

Therefore,

#x^2=(-1+-sqrt(1+4*2*10))/(2*2)=(-1+-sqrt81)/(4)#

#=(-1+-9)/4#

#x^2=8/4=2# and #x=-10/4=-5/2#

#x=+-sqrt2# and #x=+-sqrt(5/2)i#

Therefore

When #x=sqrt2#

#2+2y^4=10#

#y^4=4#

#y^2=2#

#y=+-sqrt2#

The solutions #in RR# are

#S={(sqrt2,sqrt2), (sqrt2,-sqrt2), (-sqrt2,sqrt2),(-sqrt2,-sqrt2)}#

The solutions are at the intersection of the #2# curves.

graph{(2x^4+y^2-10)(x^2+2y^4-10)=0 [-10, 10, -5, 5]}