How do you solve the system of equations #2x + 4y = - 22# and #3x + 3y = - 21#?

1 Answer
Dec 2, 2016

#x = -3 and #y = -4#

Explanation:

Step 1) Solve the first equation for #x#:

#2x + 4y - 4y = -22 - 4y#

#2x + 0 = -22 - 4y#

#2x = -22 - 4y#

#(2x)/2 = (-22)/2 - (4y)/2#

#x = -11 - 2y#

Step 2) Substitute #-11 - 2y# for #x# in the second equation and solve for #y#:

#3(-11 - 2y) + 3y = -21#

#-33 - 6y + 3y = -21#

#-33 - 3y = -21#

#-33 + 33 - 3y = -21 + 33#

#-3y = 12#

#(-3y)/(-3) = 12/(-3)#

#y = -4#

Step 3) Substitute #18# for #y# in the solution to the first equation in Step 1) and calculate #x#:

#x = -11 - (2*-4)#

#x = -11 + 8#

#x = -3#