Step 1) Solve the second equation for #x#:
#x - y = 2#
#x - y + y = 2 + y#
#x - 0 = 2 + y#
#x = 2 + y#
Step 2) Substitute #2 + y# for #x# in the first equation and solve for #y#:
#3(2 + y) + 2y = 9#
#6 + 3y + 2y = 9#
#6 + 5y = 9#
#6 - 6 + 5y 9 - 6#
#0 + 5y = 3#
#5y = 3#
#(5y)/5 = 3/5#
#(color(red)(cancel(color(black)(5)))y)/color(red)(cancel(color(black)(5))) = 3/5#
#y = 3/5#
Step 3) Substitute #3/5# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:
#x = 2 + 3/5#
#x = (5/5 xx 2) + 3/5#
#x = 10/5 + 3/5#
#x = 13/5#
The solution is:
#x = 13/5# and #y = 3/5#