How do you solve the system of equations #3x + 3y = 1# and #- 20x + 13y = - 8#?

1 Answer
Jan 19, 2018

See a solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#3x + 3y = 1#

#(3x + 3y)/color(red)(3) = 1/color(red)(3)#

#(3x)/color(red)(3) + (3y)/color(red)(3) = 1/3#

#x + y = 1/3#

#x + y - color(red)(y) = 1/3 - color(red)(y)#

#x + 0 = 1/3 - y#

#x = 1/3 - y#

Step 2) Substitute #(1/3 - y)# for #x# in the second equation and solve for #y#:

#-20x + 13y = -8# becomes:

#-20(1/3 - y) + 13y = -8#

#(-20 xx 1/3) + (-20 xx -y) + 13y = -8#

#-20/3 + 20y + 13y = -8#

#-20/3 + (20 + 13)y = -8#

#-20/3 + 33y = -8#

#-20/3 + color(red)(20/3) + 33y = -8 + color(red)(20/3)#

#0 + 33y = (3/3 xx -8) + color(red)(20/3)#

#33y = -24/3 + color(red)(20/3)#

#33y = (-24 + color(red)(20))/3#

#33y = -4/3#

#33y xx 1/color(red)(33) = -4/3 xx 1/color(red)(33)#

#color(red)(cancel(color(black)(33)))y xx 1/cancel(color(red)(33)) = -4/99#

#y = -4/99#

Step 3) Substitute #-4/99# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:

#x = 1/3 - y# becomes:

#x = 1/3 - (-4/99)#

#x = (33/33 xx 1/3) + 4/99#

#x = 33/99 + 4/99#

#x = (33 + 4)/99#

#x = 37/99#

The Solution Is:

#x = 37/99# and #y = -4/99#

Or

#(37/99, -4/99)#