How do you solve the system of equations 3x - \frac { 4} { 3} y = - 8 and - 4y = x + 16?

1 Answer
Aug 23, 2017

See a solution process below:

Explanation:

Step 1) Solve the second equation for x:

-4y = x + 16

-4y - color(red)(16) = x + 16 - color(red)(16)

-4y - 16 = x + 0

-4y - 16 = x

x = -4y - 16

Step 2) Substitute (-4y - 16) for x in the first equation and solve for y:

3x - 4/3y = -8 becomes:

3(-4y - 16) - 4/3y = -8

(3 * -4y) - (3 * 16) - 4/3y = -8

-12y - 48 - 4/3y = -8

-12y - 4/3y - 48 = -8

(3/3 * -12)y - 4/3y - 48 = -8

-36/3y - 4/3y - 48 = -8

-40/3y - 48 = -8

-40/3y - 48 + color(red)(48) = -8 + color(red)(48)

-40/3y - 0 = 40

-40/3y = 40

-color(red)(3)/color(blue)(40) * -(40)/3y = -color(red)(3)/color(blue)(40) * 40

-cancel(color(red)(3))/cancel(color(blue)(40)) * -color(blue)(cancel(color(black)(40)))/color(red)(cancel(color(black)(3)))y = -color(red)(3)/cancel(color(blue)(40)) * color(blue)(cancel(color(black)(40)))

- -y = -3

y = -3

Step 3) Substitute -3 for y in the solution to the second equation at the end of Step 1 and calculate x:

x = -4y - 16 becomes:

x = (-4 * -3) - 16

x = 12 - 16

x = -4

The Solution Is: x = -4 and y = -3 or (-4, -3)