Step 1) Solve the second equation for #x#:
#-2x - 10y = -18#
#-2x - 10y + color(red)(10y) = -18 + color(red)(10y)#
#-2x - 0 = -18 + 10y#
#-2x = -18 + 10y#
#(-2x)/color(red)(-2) = (-18 + 10y)/color(red)(-2)#
#(color(red)(cancel(color(black)(-2)))x)/cancel(color(red)(-2)) = (-18)/color(red)(-2) + (10y)/color(red)(-2)#
#x = 9 - 5y#
Step 2) Substitute #color(red)(9 - 5y)# for #x# in the first equation and solve for #y#:
#4(color(red)(9 - 5y)) - 2y = -30#
#(4 xx color(red)(9)) - (4 xx color(red)(5y)) - 2y = -30#
#36 - 20y - 2y = -30#
#36 - 22y = -30#
#36 - color(red)(36) - 22y = -30 - color(red)(36)#
#0 - 22y = -66#
#-22y = -66#
#(-22y)/color(red)(-22) = (-66)/color(red)(-22)#
#(color(red)(cancel(color(black)(-22)))y)/cancel(color(red)(-22)) = 3#
#y = 3#
Step 3) Substitute #color(red)(3)# for #y# in the solution to the second equation at the end of Step 1:
#x = 9 - (5 xx color(red)(3))#
#x = 9 - 15#
#x = -6#
The solution to this system of equations is:
#x = -6# and #y = 3#