How do you solve the system of equations #4x - 2y = - 30# and #- 2x - 10y = - 18#?

1 Answer
Jan 18, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the second equation for #x#:

#-2x - 10y = -18#

#-2x - 10y + color(red)(10y) = -18 + color(red)(10y)#

#-2x - 0 = -18 + 10y#

#-2x = -18 + 10y#

#(-2x)/color(red)(-2) = (-18 + 10y)/color(red)(-2)#

#(color(red)(cancel(color(black)(-2)))x)/cancel(color(red)(-2)) = (-18)/color(red)(-2) + (10y)/color(red)(-2)#

#x = 9 - 5y#

Step 2) Substitute #color(red)(9 - 5y)# for #x# in the first equation and solve for #y#:

#4(color(red)(9 - 5y)) - 2y = -30#

#(4 xx color(red)(9)) - (4 xx color(red)(5y)) - 2y = -30#

#36 - 20y - 2y = -30#

#36 - 22y = -30#

#36 - color(red)(36) - 22y = -30 - color(red)(36)#

#0 - 22y = -66#

#-22y = -66#

#(-22y)/color(red)(-22) = (-66)/color(red)(-22)#

#(color(red)(cancel(color(black)(-22)))y)/cancel(color(red)(-22)) = 3#

#y = 3#

Step 3) Substitute #color(red)(3)# for #y# in the solution to the second equation at the end of Step 1:

#x = 9 - (5 xx color(red)(3))#

#x = 9 - 15#

#x = -6#

The solution to this system of equations is:

#x = -6# and #y = 3#