Step 1) Solve the second equation for #x#:
#2x - 2y = 18#
#2x - 2y + color(red)(2y) = 18 + color(red)(2y)#
#2x - 0 = 18 + 2y#
#2x = 18 + 2y#
#(2x)/color(red)(2) = (18 + 2y)/color(red)(2)#
#(color(red)(cancel(color(black)(2)))x)/cancel(color(red)(2)) = 18/color(red)(2) + (2y)/color(red)(2)#
#x = 9 + y#
Step 2) Substitute #(9 + y)# for #x# in the first equation and solve for #y#:
#4x + 3y = -13# becomes:
#4(9 + y) + 3y = -13#
#(4 xx 9) + (4 xx y) + 3y = -13#
#36 + 4y + 3y = -13#
#36 + (4 + 3)y = -13#
#36 + 7y = -13#
#-color(red)(36) + 36 + 7y = -color(red)(36) - 13#
#0 + 7y = -49#
#7y = -49#
#(7y)/color(red)(7) = -49/color(red)(7)#
#(color(red)(cancel(color(black)(7)))y)/cancel(color(red)(7)) = -7#
#y = -7#
Step 3) Substitute #-7# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:
#x = 9 + y# becomes:
#x = 9 - 7#
#x = 2#
The solution is: #x = 2# and #y = -7# or #(2, -7)#