How do you solve the system of equations #4x + 3y = - 19# and #7x + 27= y#?

2 Answers
Oct 29, 2017

#x= -4, y = -1#

Explanation:

#4x + 3y = -19# (1)
#7x - y = -27# (2)

Multiply Eqn (2) by 3 and then add.

#4x +3y = -19#
#21x - 3y = -81#

Adding both to eliminate y,
#25x = -100#
#x = -4#

Substituting value of x in (1),
#-16 + 3y = -19#
#3y = -3#
#y = -1#

Oct 29, 2017

#(x,y)to(-4,-1)#

Explanation:

#4x+3y=-19to(1)#

#7x+27=color(red)(y)to(2)#

#"equation "(2)" gives y in terms of x and so can be "#
#color(blue)"substituted ""into "(1)"#

#rArr4x+3(7x+27)=-19#

#rArr4x+21x+81=-19#

#"subtract 81 from both sides "#

#25xcancel(+81)cancel(-81)=-19-81#

#rArr25x=-100#

#"divide both sides by 25"#

#rArrx=-4#

#"substitute this value in "(2)" and solve for y"#

#rArry=(7xx-4)+27=-28+27=-1#

#rArr"point of intersection "=(-4,-1)#
graph{(y-7x-27)(y+4/3x+19/3)=0 [-10, 10, -5, 5]}