How do you solve the system of equations #4x + 3y = - 9# and #- 5x = 2y + 13#?

1 Answer
May 6, 2017

#"answer : x=-6 , y=1"#

Explanation:

#4x+3y=-9" , "(1)#
#-5x=2y+13" , "(2)#

#"let us multiply the both sides of equation (1) by 5"#
#color(red)(5*)(4x+3y)=color(red)(5*)(-9)" let us rearrange..."#

#20x+15y=-45" , "(3)#

#"let us multiply the both sides of equation (2) by 4"#
#color(red)(4*)(-5x)=color(red)(4*)(2y+13) " let us rearrange..."#

#-20x=8y+52" , "(4)#

#"let us sum the equation (3) with (4)"#

#cancel(20x)+15ycancel(-20x)=-45+8y+52#

#"we have eliminated the term 'x' "#

#15y=8y+7#

#15y-8y=7#

#7y=7y#

#y=7/7#

#y=1#

#"now, let us write y=1 in one of the any equations above."#

#4x+15*1=-9" , "(1)#
#4x+15=-9#

#4x=-9-15#

#4x=-24#

#x=-24/4#

#x=-6#