How do you solve the system of equations #4x + 7y = 9# and #- 2x - 3= y#?
1 Answer
Jul 5, 2017
Explanation:
#4x+7color(red)(y)=9to(1)#
#-2x-3=color(red)(y)to(2)#
#"from " (2)" substitute the value of y into " (1)#
#4x+7(-2x-3)=9larr" distribute"#
#rArr4x-14x-21=9larr" collect like terms"#
#rArr-10x-21=9#
#"add 21 to both sides"#
#-10xcancel(-21)cancel(+21)=9+21#
#rArr-10x=30#
#"divide both sides by - 10"#
#(cancel(-10) x)/cancel(-10)=30/(-10)#
#rArrx=-3#
#"substitute this value into " (2)#
#y=(-2xx-3)-3=3#
#color(blue)"As a check"#
#"substitute values for x and y into " (1)#
#(4xx-3)+(7xx3)=-12+21=9larr" True"#
#"point of intersection "=(-3,3)#
graph{(y+2x+3)(y+4/7x-9/7)=0 [-10, 10, -5, 5]}