How do you solve the system of equations #4x + 8y = - 20# and #- 10x + 8y = - 6#?

1 Answer
Jun 3, 2017

See a solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#4x + 8y = -20#

#(4x + 8y)/color(red)(4) = -20/color(red)(4)#

#(4x)/color(red)(4) + (8y)/color(red)(4) = -5#

#x + 2y = -5#

#x + 2y - color(red)(2y) = -5 - color(red)(2y)#

#x + 0 = -5 - 2y#

#x = -5 - 2y#

Step 2) Substitute #(-5 - 2y)# for #x# in the second equation and solve for #y#:

#-10x + 8y = -6# becomes:

#-10(-5 - 2y) + 8y = -6#

#(-10 * -5) + (-10 * -2y) + 8y = -6#

#50 + 20y + 8y = -6#

#50 + (20 + 8)y = -6#

#50 + 28y = -6#

#-color(red)(50) + 50 + 28y = -color(red)(50) - 6#

#0 + 28y = -56#

#28y = -56#

#(28y)/color(red)(28) = -56/color(red)(28)#

#(color(red)(cancel(color(black)(28)))y)/cancel(color(red)(28)) = -2#

#y = -2#

Step 3) Substitute #-2# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:

#x = -5 - 2y# becomes:

#x = -5 - (2 * -2)#

#x = -5 - (-4)#

#x = -5 + 4#

#x = -1#

The solution is: #x = -1# and #y = -2# or #(-1, -2)#