How do you solve the system of equations #6x - 5y = 1# and #2x - 5y = 17#?

1 Answer
Mar 4, 2017

#x=-4" , "y=-5#

Explanation:

#6x-5y=1" (1)"#
#2x-5y=17" (2)"#

#"let us subtract equation (2) from equation (1) to eliminate 'y'"#

#6x-5y-(2x-5y)=1-17#

#6x-5y-2x+5y=-16#

#6x-cancel(5y)-2x+cancel(5y)=-16#

#6x-2x=-16#

#4x=-16" divide both sides of equation by 4"#

#(cancel(4)x)/cancel(4)=(-16)/4#

#x=-4#

#"we can use (1) or (2) to solve value 'y'"#

#6x-5y=1" (1)"#

#6*(-4)-5y=1#

#-24-5y=1#

#-5y=1+24#

#-5y=25" divide both sides of equation by -5"#

#(-5y)/(-5)=25/(-5)#

#(cancel(-5y))/(cancel(-5))=25/(-5)#

#y=(-25)/5#

#y=-5#