How do you solve the system of equations#6x + 8= 8y# and #- 2y = x + 8#?

1 Answer
Jan 20, 2018

See a solution process below: #(-4, -2)#

Explanation:

Step 1) Solve the second equation for #x#:

#-2y = x + 8#

#-2y - color(red)(8) = x + 8 - color(red)(8)#

#-2y - 8 = x + 0#

#-2y - 8 = x#

#x = -2y - 8#

Step 2) Substitute #(-2y - 8)# for #x# in the first equation and solve for #y#:

#6x + 8 = 8y# becomes:

#6(-2y - 8) + 8 = 8y#

#(6 xx -2y) + (6 xx -8) + 8 = 8y#

#-12y + (-48) + 8 = 8y#

#-12y - 48 + 8 = 8y#

#-12y - 40 = 8y#

#-12y + color(red)(12y) - 40 = 8y + color(red)(12y)#

#0 - 40 = (8 + color(red)(12))y#

#-40 = 20y#

#-40/color(red)(20) = (20y)/color(red)(20)#

#-2 = (color(red)(cancel(color(black)(20)))y)/cancel(color(red)(20))#

#-2 = y#

#y = -2#

Step 3) Substitute #-2# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:

#x = -2y - 8# becomes:

#x = (-2 xx -2) - 8#

#x = 4 - 8#

#x = -4#

The Solution Is:

#x = -4# and #y = -2#

Or

#(-4, -2)#