Step 1) Solve the second equation for #x#:
#-2y = x + 8#
#-2y - color(red)(8) = x + 8 - color(red)(8)#
#-2y - 8 = x + 0#
#-2y - 8 = x#
#x = -2y - 8#
Step 2) Substitute #(-2y - 8)# for #x# in the first equation and solve for #y#:
#6x + 8 = 8y# becomes:
#6(-2y - 8) + 8 = 8y#
#(6 xx -2y) + (6 xx -8) + 8 = 8y#
#-12y + (-48) + 8 = 8y#
#-12y - 48 + 8 = 8y#
#-12y - 40 = 8y#
#-12y + color(red)(12y) - 40 = 8y + color(red)(12y)#
#0 - 40 = (8 + color(red)(12))y#
#-40 = 20y#
#-40/color(red)(20) = (20y)/color(red)(20)#
#-2 = (color(red)(cancel(color(black)(20)))y)/cancel(color(red)(20))#
#-2 = y#
#y = -2#
Step 3) Substitute #-2# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:
#x = -2y - 8# becomes:
#x = (-2 xx -2) - 8#
#x = 4 - 8#
#x = -4#
The Solution Is:
#x = -4# and #y = -2#
Or
#(-4, -2)#