Step 1) Solve the second equation for #y#:
#2x + y = -39#
#-color(red)(2x) + 2x + y = -color(red)(2x) - 39#
#0 + y = -2x - 39#
#y = -2x - 39#
Step 2) Substitute #-2x - 39# for #y# in the first equation and solve for #x#:
#7x - 3y = -65# becomes:
#7x - 3(-2x - 39) = -65#
#7x + (3 xx 2x) + (3 xx 39) = -65#
#7x + 6x + 117 = -65#
#13x + 117 = -65#
#13x + 117 - color(red)(117) = -65 - color(red)(117)#
#13x + 0 = -182#
#13x = -182#
#(13x)/color(red)(13) = -182/color(red)(13)#
#(color(red)(cancel(color(black)(13)))x)/cancel(color(red)(13)) = -14#
#x = -14#
Step 3) Substitute #-14# for #x# in the solution to the second equation at the end of Step 1 and calculate #y#:
#y = -2x - 39# becomes:
#y = (-2 xx -14) - 39#
#y = 28 - 39#
#y = -11#
The solution is: #x = -14# and #y = -11# or #(-14, -11)#