How do you solve the system of equations #7x - 3y = - 65# and #2x + y = - 39#?

1 Answer
Feb 23, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the second equation for #y#:

#2x + y = -39#

#-color(red)(2x) + 2x + y = -color(red)(2x) - 39#

#0 + y = -2x - 39#

#y = -2x - 39#

Step 2) Substitute #-2x - 39# for #y# in the first equation and solve for #x#:

#7x - 3y = -65# becomes:

#7x - 3(-2x - 39) = -65#

#7x + (3 xx 2x) + (3 xx 39) = -65#

#7x + 6x + 117 = -65#

#13x + 117 = -65#

#13x + 117 - color(red)(117) = -65 - color(red)(117)#

#13x + 0 = -182#

#13x = -182#

#(13x)/color(red)(13) = -182/color(red)(13)#

#(color(red)(cancel(color(black)(13)))x)/cancel(color(red)(13)) = -14#

#x = -14#

Step 3) Substitute #-14# for #x# in the solution to the second equation at the end of Step 1 and calculate #y#:

#y = -2x - 39# becomes:

#y = (-2 xx -14) - 39#

#y = 28 - 39#

#y = -11#

The solution is: #x = -14# and #y = -11# or #(-14, -11)#