How do you solve the system of equations #7x - 7y = - 7# and #- 3x + y = 13#?

1 Answer
Jan 26, 2018

The answers are #x=-6# and #y=-5#.

Explanation:

You can simplify the first equation:

#7x-7y=-7#

#(7x-7y)/color(red)7=(-7)/color(red)7#

#x-y=-1#

Now you can solve for either #x# or #y#, I'll solve for #x# (for no particular reason):

#xcancel(-y color(red)(+y))=-1color(red)(+y)#

#x=-1+y#

Now we plug this #x# into the other given equation and solve for #y#:

#-3x+y=13=>#

#-3(-1+y)+y=13#

#3-3y+y=13#

#3-2y=13#

#-2y=10#

#y=-5#

Finally, plug #y# into either one of the equations to solve for #x#:

#-3x+y=13=>#

#-3x-5=13#

#-3x=18#

#x=-6#

Your final answers are #x=-6# and #y=-5#.