How do you solve the system of equations #-7x + y = - 1# and #2x - 5y = 5#?
3 Answers
See a solution process below:
Explanation:
Step 1) Solve the first equation for
Step 2) Substitute
Step 3) Substitute
The Solution Is:
Or
Explanation:
#-7x+y=-1to(1)#
#2x-5y=5to(2)#
#"from equation "(1)" we can express y in terms of x"#
#(1)toy=-1+7xto(3)#
#"substitute "y=-1+7x" in equation "(2)#
#2x-5(-1+7x)=5#
#rArr2x+5-35x=5#
#rArr-33x+5=5#
#"subtract 5 from both sides"#
#-33xcancel(+5)cancel(-5)=5-5#
#rArr-33x=0rArrx=0#
#"substitute "x=0" in equation "(3)#
#rArry=-1+0=-1#
#"the point of intersection "=(0,-1)# graph{(y+1-7x)(y-2/5x+1)=0 [-10, 10, -5, 5]}
Explanation:
Thus,