How do you solve the system of equations #s=4r-1# and #6r-5s=-23# by algebraic method?

2 Answers
Mar 17, 2017

#(r,s)to(2,7)#

Explanation:

Label the equations.

#color(red)(s)=4r-1to(1)#

#6r-5color(red)(s)=-23to(2)#

Solve using the #color(blue)"substitution method"#

#"Substitute " color(red)(s)=4r-1" into equation " (2)#

#rArr6r-5(4r-1)=-23#

distribute the bracket and simplify.

#6r-20r+5=-23#

#rArr-14r+5=-23#

subtract 5 from both sides.

#-14rcancel(+5)cancel(-5)=-23-5#

#rArr-14r=-28#

divide both sides by - 14

#(cancel(-14) r)/cancel(-14)=(-28)/(-14)#

#rArrr=2#

Substitute this value into ( 1 ) to obtain the corresponding value of s

#rArrs=(4xx2)-1=8-1=7#

#rArr"solution " r=2" and " s=7#

Mar 17, 2017

#r=2,s=7#

Explanation:

Substitute the given s-value into the second formula
#6r-5*(4r-1)=-23#
Multiply, then solve
#6r-20r+5=-23#

#6r-20r=-23-5#

#-14r=-28#

#(-14r)/-14=(-28)/-14#

#r=2#

Substitute this into the first equation.
#s=4*(2)-1=8-1=7#

Check by substituting both into the second formula
#6*(2)-5*(7)=-23#
#12-35=-23#. True