Step 1) Solve the first equation for #x#:
#x - 2y = 5#
#x - 2y + color(red)(2y) = 5 + color(red)(2y)#
#x - 0 = 5 + 2y#
#x = 5 + 2y#
Step 2) Substitute #(5 + 2y)# for #x# in the second equation and solve for #y#:
#-3x + 4y = -11# becomes:
#-3(5 + 2y) + 4y = -11#
#(-3 * 5) + (-3 * 2y) + 4y = -11#
#-15 - 6y + 4y = -11#
#-15 + (-6 + 4)y = -11#
#-15 - 2y = -11#
#color(red)(15) - 15 - 2y = color(red)(15) - 11#
#0 - 2y = 4#
#-2y = 4#
#(-2y)/color(red)(-2) = 4/color(red)(-2)#
#(color(red)(cancel(color(black)(-2)))y)/cancel(color(red)(-2)) = -2#
#y = -2#
Step 3) Substitute #-2# for #y# in the solution the the first equation at the end of Step 1 and calculate #x#:
#x = 5 + 2y# becomes:
#x = 5 + (2 * -2)#
#x = 5 - 4#
#x = 1#
The solution is #x = 1# and #y = -2# or #(1, -2)#