How do you solve the system of equations #x- 2y = 5# and #- 3x + 4y = - 11#?

1 Answer
Jun 28, 2017

See a solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#x - 2y = 5#

#x - 2y + color(red)(2y) = 5 + color(red)(2y)#

#x - 0 = 5 + 2y#

#x = 5 + 2y#

Step 2) Substitute #(5 + 2y)# for #x# in the second equation and solve for #y#:

#-3x + 4y = -11# becomes:

#-3(5 + 2y) + 4y = -11#

#(-3 * 5) + (-3 * 2y) + 4y = -11#

#-15 - 6y + 4y = -11#

#-15 + (-6 + 4)y = -11#

#-15 - 2y = -11#

#color(red)(15) - 15 - 2y = color(red)(15) - 11#

#0 - 2y = 4#

#-2y = 4#

#(-2y)/color(red)(-2) = 4/color(red)(-2)#

#(color(red)(cancel(color(black)(-2)))y)/cancel(color(red)(-2)) = -2#

#y = -2#

Step 3) Substitute #-2# for #y# in the solution the the first equation at the end of Step 1 and calculate #x#:

#x = 5 + 2y# becomes:

#x = 5 + (2 * -2)#

#x = 5 - 4#

#x = 1#

The solution is #x = 1# and #y = -2# or #(1, -2)#