Write the coefficients of all 3 equations into an augmented matrix:
#x + 4y - 2z = 11 to [(1, 4,-2,|,11)]#
#2x + 9y - 7z = -3 to [(1, 4,-2,|,11),(2,9,-7,|,-3)]#
#-3x + y - z = -6 to [(1, 4,-2,|,11),(2,9,-7,|,-3),(-3,1,-1,|,-6)]#
Perform row operations.
#[
(1, 4,-2,|,11),
(2,9,-7,|,-3),
(-3,1,-1,|,-6)
]#
#-2R_1 + R_2 to R_2#
#[
(1, 4,-2,|,11),
(0,1,-3,|,-25),
(-3,1,-1,|,-6)
]#
#3R_1 + R_3 to R_3#
#[
(1, 4,-2,|,11),
(0,1,-3,|,-25),
(0,13,-7,|,27)
]#
#-13R_2 + R_3 to R_3#
#[
(1, 4,-2,|,11),
(0,1,-3,|,-25),
(0,0,32,|,352)
]#
#R_3/32 to R_3#
#[
(1, 4,-2,|,11),
(0,1,-3,|,-25),
(0,0,1,|,11)
]#
#3R_3 + R_2 to R_2#
#[
(1, 4,-2,|,11),
(0,1,0,|,8),
(0,0,1,|,11)
]#
#2R_3 + R_1 to R_1#
#[
(1, 4,0,|,33),
(0,1,0,|,8),
(0,0,1,|,11)
]#
#-4R_2 + R_1 to R_1#
#[
(1, 0,0,|,1),
(0,1,0,|,8),
(0,0,1,|,11)
]#
#x = 1, y = 8 and z = 11#
Check:
#1 + 4(8) - 2(11) = 11#
#2(1) + 9(8) - 7(11) = -3#
#-3(1) + (8) - 11 = -6#
#11 = 11#
#-3 = -3#
#-6 = -6#
This checks.