How do you solve the system of equations #x+ 5y = - 7# and # 6x - 8y = - 24#?

1 Answer

#color(blue)(ul(bar(abs(color(black)(-88/19,-9/19)))))#

Explanation:

One way to do it is to use substitution. I'll take the equation #x+5y=-7# and solve for #x#:

#x=-5y-7#

and now I'll substitute it into our other equation:

#6x-8y=-24#

#6(-5y-7)-8y=-24#

#-30y-42-8y=-24#

#-38y=18#

#y=-18/38=-9/19#

And now let's substitute in and solve for #x#:

#x+5y=-7#

#x+5(-9/19)=-7#

#x-45/19=-7#

#x=-7+45/19=-7(19/19)+45/19=-133/19+45/19=-88/19#

and let's check the other as well:

#6x-8y=-24#

#6x-8(-9/19)=-24#

#6x+72/19=-24#

#6x=-24(19/19)-72/19#

#x=((-456-72)/19)/6=(-528/19)/6=-528/(19xx6)=-88/19#

Our solution then is:

#color(blue)(ul(bar(abs(color(black)(-88/19,-9/19)))))#

We can see this point here:

graph{(6x-8y+24)(x+5y+7)=0 [-15, 5, -5, 5]}