Step 1) Solve the first equation for #x#:
#x + 9y = -10#
#x + 9y - color(red0(9y) = -10 - color(red)(9y)#
#x + 0 = -10 - 9y#
#x = -10 - 9y#
Step 2) Substitute #-10 - 9y# for #x# in the second equation and solve for #y#:
#2x + 6y = 4# becomes:
#2(-10 - 9y) + 6y = 4#
#(2 xx -10) + (2 xx -9y) + 6y = 4#
#-20 - 18y + 6y = 4#
#-20 - 12y = 4#
#color(red)(20) - 20 - 12y = color(red)(20) + 4#
#0 - 12y = 24#
#-12y = 24#
#(-12y)/color(red)(-12) = 24/color(red)(-12)#
#(color(red)(cancel(color(black)(-12)))y)/cancel(color(red)(-12)) = -2#
#y = -2#
Step 3) Substitute #-2# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:
#x = -10 - 9y# becomes:
#x = -10 - (9 xx -2)#
#x = -10 + 18#
#x = 8#
The solution is: #x = 8# and #y = -2# or #(8, -2)#