How do you solve the system of equations #y= - 2x ^ { 2}# and #13x ^ { 2} + y ^ { 2} = 12#?

1 Answer

#(sqrt3/2,-3/2),(-sqrt3/2,-3/2),(0+2i,8+0i),(0-2i,8+0i)#

Explanation:

We have

#y=-2x^2#
#13x^2+y^2=12#

Let's substitute the first equation into the second:

#13x^2+(-2x^2)^2=12#

#13x^2+4x^4=12#

#4x^4+13x^2-12=0#

I'll set #A=x^2#:

#4A^2+13A-12=0#

and I'll use the pythagorean formula to solve for roots:

# A = (-b \pm sqrt(b^2-4ac)) / (2a) # with #a=4, b=13, c=-12#

#A=(-13 pm sqrt(13^2-4(4)(-12)))/(2(4))=(-13pm sqrt(169+192))/8=(-13pm19)/8=>#

#=>6/8=3/4#
#=>-32/8=-4#

Since #A=x^2=3/4, -4=>x=pmsqrt(3)/2, pm2i#

We can now solve for resulting #y# values. I'll use #y=-2x^2# :

  • #x=sqrt3/2=>y=-2(sqrt3/2)^2=-2(3/4)=-3/2#

  • #x=-sqrt3/2=> y=-2(-sqrt3/2)^2=-2(3/4)=-3/2#

The other two roots require graphing across several dimensions using complex numbers:

  • #x=2i=>y=-2(2i)^2=-2(-4)=8#

  • #x=-2i=>y=-2(-2i)^2=-2(-4)=8#