How do you solve the system of equations #y= - 4x + 9# and #- x - 12y = - 14#?

1 Answer
Jun 21, 2017

#(x,y)=(2,1)#

Explanation:

Solve the system of equations:

#y=-4x+9# and #-x-12y=-14#

The first equation gives a value for #y# that can be substituted into the second equation.

#-x-12y=-14#

Multiply both sides by #-1#. This will change each sign to its opposite.

#x+12y=14#

Substitute #-4x+9# for #y# in the second equation.

#x+12(-4x+9)=14#

Expand.

#x-48x+108=14#

Subtract #108# from both sides.

#x-48x+color(red)cancel(color(black)(108))-color(red)cancel(color(black)(108))=14-108#

Simplify.

#-47x=-94#

Divide both sides by #-47#.

#color(red)cancel(color(black)((-47)color(black)(x)))/color(red)cancel(color(black)(-47))=(-94)/(-47)# #lArr# A negative divided by another negative produces a positive result.

Simplify.

#color(red)(x)=-94/-47#

#color(red)(x)=color(red)2#

Now substitute #2# for #x# into the first equation to solve for #y#.

#color(purple)(y)=-4*color(red)2+9#

#color(purple)(y)=-8+9#

#color(purple)y=color(purple)(1#

Check the answer with both equations.

First equation.

#color(purple)(y)=-4color(red)x+9#

#1=-4*color(red)2+9#

Simplify.

#1=-8+9#

#1=1# Check

Second equation.

#color(red)(-x)-12color(purple)y=-14#

#-color(red)2-12*color(purple)1=-14#

#-2-12=-14#

#-14=-14# Check