Step 1) Solve the first equation for #x#:
#x + 4y - color(red)(4y) = 8 - color(red)(4y)#
#x + 0 = 8 - 4y#
#x = 8 - 4y#
Step 2) Substitute #8 - 4y# for #x# in the second equation and solve for #y#:
#2x - 5y = 29# becomes:
#2(8 - 4y) - 5y = 29#
#(2 xx 8) - (2xx4y) - 5y = 29#
#16 - 8y - 5y = 29#
#16 - 13y = 29#
#-color(red)(16) + 16 - 13y = -color(red)(16) + 29#
#0 - 13y = 13#
#-13y = 13#
#(-13y)/color(red)(-13) = 13/color(red)(-13)#
#(color(red)(cancel(color(black)(-13)))y)/cancel(color(red)(-13)) = -1#
#y = -1#
Step 3) Substitute #-1# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:
#x = 8 - 4y# becomes:
#x = 8 - (4 xx -1)#
#x = 8 - (-4)#
#x = 8 + 4#
#x = 12#
The solution is #x = 12# and #y = -1# or #(12, -1)#