How do you solve #(x + 2) ( 4x - 3) \leq 0#?

1 Answer
Aug 26, 2017

The solution is #x in [-2,3/4]#

Explanation:

Let #f(x)=(x+2)(4x-3)#

Let 's build the sign chart

#color(white)(aaaa)##x##color(white)(aaaaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaaaaa)##3/4##color(white)(aaaaa)##+oo#

#color(white)(aaaa)##x+2##color(white)(aaaaaaa)##-##color(white)(aa)##0##color(white)(aaaa)##+##color(white)(aaaaa)##+#

#color(white)(aaaa)##4x-3##color(white)(aaaaaa)##-##color(white)(aa)####color(white)(aaaaa)##-##color(white)(aa)##0##color(white)(aa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaaa)##+##color(white)(aa)##0##color(white)(aaaa)##-##color(white)(aa)##0##color(white)(aa)##+#

Therefore,

#f(x)<=0#, when #x in [-2,3/4]#

graph{(x+2)(4x-3) [-11.26, 11.24, -7.88, 3.37]}