How do you solve #x^ { 2} + 98= 14x#?
1 Answer
Explanation:
Given:
#x^2+98=14x#
Subtracting
#x^2-14x+98 = 0#
This is in standard form:
#ax^2+bx+c = 0#
with
It has discriminant
#Delta = b^2-4ac = (color(blue)(-14))^2-4(color(blue)(1))(color(blue)(98)) = 196-392 = -196#
Since
We can solve it with complex numbers, using the difference of squares identity:
#A^2-B^2=(A-B)(A+B)#
with
#0 = x^2-14x+98#
#color(white)(0) = x^2-14x+7^2+49#
#color(white)(0) = (x-7)^2+7^2#
#color(white)(0) = (x-7)^2-(7i)^2#
#color(white)(0) = ((x-7)-7i)((x-7)+7i)#
#color(white)(0) = (x-7-7i)(x-7+7i)#
Hence:
If you prefer, you can use the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-b+-sqrt(Delta))/(2a)#
#color(white)(x) = (-(color(blue)(-14))+-sqrt(-196))/(2(color(blue)(1)))#
#color(white)(x) = (14+-14i)/2#
#color(white)(x) = 7+-7i#