How do you solve #x^ { 2} + 98= 14x#?

1 Answer
May 30, 2018

#x = 7+-7i#

Explanation:

Given:

#x^2+98=14x#

Subtracting #14x# from both sides, we get:

#x^2-14x+98 = 0#

This is in standard form:

#ax^2+bx+c = 0#

with #a=1#, #b=-14# and #c=98#.

It has discriminant #Delta# given by the formula:

#Delta = b^2-4ac = (color(blue)(-14))^2-4(color(blue)(1))(color(blue)(98)) = 196-392 = -196#

Since #Delta < 0# we can tell that this quadratic has no Real solutions.

Completing the square

We can solve it with complex numbers, using the difference of squares identity:

#A^2-B^2=(A-B)(A+B)#

with #A=(x-7)# and #B=7i#, (where #i^2=-1#) as follows:

#0 = x^2-14x+98#

#color(white)(0) = x^2-14x+7^2+49#

#color(white)(0) = (x-7)^2+7^2#

#color(white)(0) = (x-7)^2-(7i)^2#

#color(white)(0) = ((x-7)-7i)((x-7)+7i)#

#color(white)(0) = (x-7-7i)(x-7+7i)#

Hence: #x = 7+-7i#

Quadratic formula

If you prefer, you can use the quadratic formula:

#x = (-b+-sqrt(b^2-4ac))/(2a)#

#color(white)(x) = (-b+-sqrt(Delta))/(2a)#

#color(white)(x) = (-(color(blue)(-14))+-sqrt(-196))/(2(color(blue)(1)))#

#color(white)(x) = (14+-14i)/2#

#color(white)(x) = 7+-7i#