How do you solve #x^2+y^2+6y+5=0# and #x^2+y^2-2x-8=0#?
1 Answer
Resolve to a quadratic in
(with matching signs for
Explanation:
Subtract the second equation from the first to get:
#6y + 2x + 13 = 0#
Subtract
#6y = -(2x+13)#
Divide both side by
#y = -(2x+13)/6#
Substitute this expression for
#0 = x^2 + (2x+13)^2/36 -(2x+13)+5#
#= x^2 + (2x+13)^2/36-2x-8#
Multiply through by
#0 = 36x^2 + (2x+13)^2 -72x - 288#
#=36x^2 + 4x^2+52x+169-72x-288#
#=40x^2-20x-119#
Solve this using the quadratic formula to get:
#x = (20 +-sqrt(20^2-(4xx40xx-119)))/(2xx40)#
#= (20 +- sqrt(400+19040))/80#
#=(20 +- sqrt(19440))/80#
#=(5+-sqrt(1215))/20#
So:
#y = -(2((5+-sqrt(1215))/20)+13)/6#
#=-(20((5+-sqrt(1215))/20)+130)/60#
#=-(5+-sqrt(1215)+130)/60#
#=-(135+-sqrt(1215))/60#
graph{(x^2+y^2+6y+5)(x^2+y^2-2x-8) = 0 [-9.755, 10.245, -6.04, 3.96]}