How do you solve #x^3-2x^2<5x-6#?

2 Answers
Mar 8, 2018

6>-6

Explanation:

x^3-2x^2< 5x-6
-2x^1< 5x-6
-7x^1< -6
x>6/7
7*6/7=6
x=6

Mar 8, 2018

The solution is #x in (-oo,-2)uu(1,3)#

Explanation:

The inequality is

#x^3-2x^2<5x-6#

#x^3-2x^2-5x+6<0#

Let #f(x)=x^3-2x^2-5x+6#

Then,

#f(1)=1-2-5-6=0#

#(x-1)# is a factor

Perform a long division

#f(x)=(x-1)(x^2-x-6)=(x-1)(x+2)(x-3)#

Now, build a sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaa)##1##color(white)(aaaaa)##3##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+2##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x-1##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x-3##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#

Therefore,

#f(x)<0# when #x in (-oo,-2)uu(1,3)#

graph{x^3-2x^2-5x+6 [-14.36, 14.12, -5.01, 9.23]}