How do you solve #-x ^ { 4} + 3x ^ { 3} - 6x ^ { 2} = 0#?
1 Answer
Sep 27, 2017
Explanation:
#"multiply through by "-1#
#rArrx^4-3x^3+6x^2=0#
#"factor out "x^2#
#rArrx^2(x^2-3x+6)=0#
#"equate each factor to zero and solve for x"#
#x^2=0rArrx=0" (multiplicity 2)"larr" 2 real roots"#
#x^2-3x+6=0toa=1,b=-3,c=6#
#"check the value of the "color(blue)"discriminant"#
#Delta=b^2-4ac=(-3)^2-24=-15#
#Delta<0rArr" there are complex roots"#
#"solve using the "color(blue)"quadratic formula"#
#x=(3+-sqrt(-15))/2=3/2+-15/2i#
#rArrx=3/2+-15/2ilarr" 2 complex conjugate roots"#