How do you solve #(x ^ { 5} - 15x ^ { 4} + 90x ^ { 3} - 270x^ { 2} + 405x - 243) -: ( x - 3)#?
2 Answers
Explanation:
What follows is not the quickest way, but it does exercise the binomial theorem a bit...
The quintic looks a suspiciously like
By the binomial theorem:
#(a+b)^5 = sum_(k=0)^5 ((5),(k)) a^(5-k) b^k#
where
These binomial coefficients can be read from the sixth row of Pascal's triangle...
So we find:
#(a+b)^5 = a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5#
Putting
#(x-3)^5 = x^5+5(-3)x^4+10(-3)^2x^3+10(-3)^3x^2+5(-3)^4x+(-3)^5#
#color(white)((x-3)^5) = x^5-15x^4+90x^3-270x^2+405x-243#
Similarly, using the fifth row of Pascal's triangle, we have:
#(x-3)^4 = x^4+4(-3)x^3+6(-3)^2x^2+4(-3)^3x+(-3)^4#
#color(white)((x-3)^4) = x^4-12x^3+54x^2-108x+81#
Hence:
#(x^5-15x^4+90x^3-270x^2+405x-243)/(x-3)#
#= (x-3)^5/(x-3)#
#= (x-3)^4#
#= x^4-12x^3+54x^2-108x+81#
#(x^5-15x^4+90x^3-270x^2+405x-243)/(x-3)#
#= x^4-12x^3+54x^2-108x+81#
Explanation:
Here's how I would do it myself.
Write the beginning of the factorisation:
#(x^5-15x^4+90x^3-270x^2+405x-243) = (x-3)(#
Then examine each power of
The first term we need to add is
#(x^5-15x^4+90x^3-270x^2+405x-243) = (x-3)(color(blue)(x^4)#
Examining what we have so far, the
#(x^5-15x^4+90x^3-270x^2+405x-243) = (x-3)(x^4color(blue)(-12x^3)#
Then
#(x^5-15x^4+90x^3-270x^2+405x-243) = (x-3)(x^4-12x^3+color(blue)(54x^2)#
Then
#(x^5-15x^4+90x^3-270x^2+405x-243) = (x-3)(x^4-12x^3+54x^2color(blue)(-108x)#
Then
#(x^5-15x^4+90x^3-270x^2+405x-243) = (x-3)(x^4-12x^3+54x^2-108x+color(blue)(81))#
Finally, note that
I have used quite a few words to describe it, but most of the calculations can be done in your head without having to write down more than:
#(x^5-15x^4+90x^3-270x^2+405x-243) = (x-3)(x^4-12x^3+54x^2-108x+81)#
Hence:
#(x^5-15x^4+90x^3-270x^2+405x-243)/(x-3)#
#= x^4-12x^3+54x^2-108x+81#