How do you solve #(x + 5) ( 3x + 9) ( 2x - 4) \geq 0#?

1 Answer
Jul 13, 2017

The solution is #x in [-5,-3]uu[2,+oo)#

Explanation:

Let #f(x)=6(x+5)(x+3)(x-2)#

We can build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaa)##-5##color(white)(aaaaaa)##-3##color(white)(aaaaaaaaa)##2##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+5##color(white)(aaaaa)##-##color(white)(aaaaa)##0##color(white)(aaa)##+##color(white)(aa)##0##color(white)(aaaa)##+##color(white)(aa)##0##color(white)(aa)##+#

#color(white)(aaaa)##x+3##color(white)(aaaaa)##-##color(white)(aaaaa)##0##color(white)(aaa)##-##color(white)(aa)##0##color(white)(aaaa)##+##color(white)(aa)##0##color(white)(aa)##+#

#color(white)(aaaa)##x-2##color(white)(aaaaa)##-##color(white)(aaaaa)##0##color(white)(aaa)##-##color(white)(aa)##0##color(white)(aaaa)##-##color(white)(aa)##0##color(white)(aa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaaa)##0##color(white)(aaa)##+##color(white)(aa)##0##color(white)(aaaa)##-##color(white)(aa)##0##color(white)(aa)##+#

Therefore,

#f(x)>=0# when #x in [-5,-3]uu[2,+oo)#

graph{(x+5)(3x+9)(2x-4) [-41.1, 41.08, -20.54, 20.57]}