How do you solve #(x - \frac { 1} { 3} ) ^ { 2} + 2( x - \frac { 1} { 3} ) ( x + \frac { 1} { 3} ) + ( x + \frac { 1} { 3} ) ^ { 2} = ( 2x + 1) ^ { 2}#?

1 Answer
May 24, 2017

#x=-1/4#

Explanation:

You have to expand all the brackets first:

#color(blue)((x-1/3)^2) + color(red)(2(x-1/3)(x+1/3)) + color(purple)((x+1/3)^2) = color(lime)((2x+1)^2)#

#color(blue)(x^2 -(2x)/3 +1/9) + color(red)(2(x^2 -1/9)) +color(purple) (x^2 +(2x)/3 +1/9) = color(lime)(4x^2 +4x+1)#

There are many additive inverses which add to #0#

#color(blue)(cancelx^2 cancel(-(2x)/3) +1/9) + color(red)(cancel(2x^2) -2/9) +color(purple)(cancelx^2 +cancel((2x)/3) +1/9) = color(lime)(cancel4x^2 +4x+1)#

Simplify:

#cancel(2/9)-cancel(2/9) = 4x+1#

Solve for #x#

#0-1=4x#

#-1/4 =x#