How do you solve #y=|x|# and #y=x+2# using substitution?
1 Answer
Explanation:
Use the substitution
#y = x+2#
#absx = x + 2#
Now subtract
#absx - x = 2#
Hmm... how do we simplify this? Well, we have three cases:
#" "x# is positive#" "x# is zero#" "x# is negative
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If
#absx - x = 2, " " x >0#
#x-x =2, " "color(white). x>0#
#0 = 2, " "" "" "x>0#
And since
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Next, let's try case 2, when
#|0| - 0 = 2#
#0 = 2#
Again,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Finally, when
#absx - x = 2, " " x<0#
#-x-x = 2, " " x<0#
#-2x = 2, " "" " x<0#
Now we can divide both sides by
#(-2x)/(-2) = 2/(-2), " "x<0#
#x = -1#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So this is the
#y = absx#
#y = abs(-1#
#y = 1#
So
Final Answer