How do you subtract #\frac { 3w ^ { 3} } { 8a ^ { 3} b ^ { 2} } - \frac { a ^ { 3} v } { 12b c ^ { 2} }#?

1 Answer
Jan 3, 2018

See a solution process below:

Explanation:

To subtract fractions the two fractions must be over a common denominator. We can put these fractions over a common denominator by multiplying each fraction by the appropriate form of #1#:

#((3c^2)/(3c^2) xx (3w^3)/(8a^3b^2)) - ((2a^3b)/(2a^3b) xx (a^3v)/(12bc^2)) =>#

#((3 xx 3)c^2w^3)/((3 xx 8)a^3b^2c^2) - (2(a^3 xx a^3)bv)/((2 xx 12)a^3(b xx b)c^2) =>#

#(9c^2w^3)/(24a^3b^2c^2) - (2a^6bv)/(24a^3b^2c^2)#

We can now subtract the numerators over the common denominators:

#(9c^2w^3 - 2a^6bv)/(24a^3b^2c^2)#