#2m^2 + 13m + 15# can be factorised by grouping:
#2 * 15 = 30#
#10 + 3 = 13#
#10 * 3 = 30#
#2m^2 + 13m + 15 = 2m^2 + 10m + 3m + 15#
#= 2m(m+5) + 3(m+5)#
#= (2m+3)(m+5)#
#2m^2 + 13m + 15= (2m+3)(m+5)#
#5m + 25 = 5(m+5)#
#10m - 20 = 10(m - 2)#
#m^2 - 4 = (m+2)(m-2)#
with factorised expressions:
#(5(m+5))/((2m+3)(m+5)) - (10(m-2))/((m+2)(m-2))#
#=(5cancel((m+5)))/((2m+3)cancel((m+5))) - (10cancel((m-2)))/((m+2)cancel((m-2)))#
#=5/((2m+3)) - 10/((m+2))#
to subtract these two fractions, find a common denominator between them:
#(2m+3)(m+2) = 2m^2+7m+6#
#5/((2m+3)) - 10/((m+2)) = (5(m+2))/(2m^2+7m+6) - (10(2m+3))/(2m^2+7m+6)#
#(5m+10-20m-30)/(2m^2+7m+6)#
#=(-15m-20)/(2m^2+7m+6)#
or #-(5(m+4))/(2m^2+7m+6)#