How do you subtract #\frac { b - 5} { 10b ^ { 2} - 12b } - \frac { 2b - 4} { 10b ^ { 2} - 12b }#?

3 Answers
May 20, 2018

#(-b-1)/(10b^2-12b)#

Explanation:

#\frac { b - 5} { 10b ^ { 2} - 12b } - \frac { 2b - 4} { 10b ^ { 2} - 12b }#

you already have a common denominator so you just:

#(b-5 -(2b-4))/(10b^2-12b)#

#(b-5 -2b+4)/(10b^2-12b)#

#(-b-1)/(10b^2-12b)#

May 20, 2018

#(-b-1)/(10b^2-12b)#

Explanation:

#"since the fractions have a "color(blue)"common denominator"#

#"subtract the numerators leaving the denominator"#

#=(b-5-(2b-4))/(10b^2-12b)#

#=(b-5-2b+4)/(10b^2-12b)=(-b-1)/(10b^2-12b)#

May 20, 2018

#(b-5)/(10b^2-12b)-(2b-4)/(10b^2-12b)=color(blue)((-b-1)/(2b(5b-6)#

Explanation:

Simplify:

#(b-5)/(10b^2-12b)-(2b-4)/(10b^2-12b)#

Since the denominators are the same, we can subtract the numerators.

#(b-5-(2b-4))/(10b^2-12b)#

Simplify #-(2b-4)# to #-2b+4#.

#(b-5-2b+4)/(10b^2-12b)#

Collect like terms in the numerator.

#(b-2b-5+4)/(10b^2-12b)#

Combine like terms.

#(-b-1)/(10b^2-12b)#

Factor out the common #2b# in the denominator.

#(-b-1)/(2b(5b-6)#