How do you take the derivative of #tan^3 (3x-1)#?
1 Answer
Apr 30, 2018
Explanation:
#"differentiate using the "color(blue)"chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#"here "y=tan^3(3x-1)=(tan(3x-1))^3#
#rArrdy/dx=3(tan(3x-1))^2xxd/dx(tan(3x-1))#
#color(white)(rArrdy/dx)=3tan^2(3x-1)xxsec^2(3x-1)xxd/dx(3x-1)#
#color(white)(rArrdy/dx)=9tan^2(3x-1)sec^2(3x-1)#