How do you take the derivative of #tan(sqrt x)#?
1 Answer
Explanation:
You can differentiate your function by using the chain rule for
Let's assume that you don't know the derivative of
#d/dx(sinx) = cosx#
and
#d/dx(cosx) = -sinx#
Here's how you would determine
You know that
#d/dx(tanx) = ([d/dx(sinx)] * cosx - sinx * d/dx(cosx))/(cosx)^2#
#d/dx(tanx) = (cosx * cosx - sinx * (-sinx))/cos^2x#
#d/dx(tanx) = (overbrace(cos^2x + sin^2x)^(color(orange)(=1)))/cos^2x = 1/cos^2x = sec^2x#
Your target derivative will thus be
#d/dx(y) = d/(du) tanu * d/dx(u)#
#y^' = 1/cos^2u * d/dx(sqrt(x))#
#y^' = 1/cos^2(sqrt(x)) * 1/2 * 1/sqrt(x)#
#y^' = color(green)(1/2 * 1/sqrt(x) * 1/cos^2(sqrt(x)))#
or
#y^' = sec^2(sqrt(x)) * 1/2 * 1/sqrt(x)#
#y^' = color(green)(1/2 * sec^2(sqrt(x))/sqrt(x))#