How do you use a Power Series to estimate the integral int_0^0.01sin(x^2)dx0.010sin(x2)dx ?

1 Answer
Oct 1, 2014

Assuming that you know that the power series for sinxsinx is:

sinx=sum_(n=1)^infty ((-1)^(n-1)x^(2n-1))/(2n-1)=x-(x^3)/(3!)+(x^5)/(5!)+...

then we can answer this fairly quickly. If not, perhaps that can be a separate question!

So, if:

sinx=x-(x^3)/(3!)+(x^5)/(5!)+(x^7)/(7!)...

Then:

sinx^2=x^2-(x^2)^3/(3!)+((x^2)^5)/(5!)+((x^2)^7)/(7!)...

Which can be re-written as:

sinx^2=x^2-1/(3!)x^6+1/(5!)x^10+1/(7!)x^14...

So then:

int_0^0.01 sinx^2=int_0^0.01 x^2-1/(3!)int_0^0.01x^6+1/(5!)int_0^0.01x^10...

=((x^3)/3-1/(3!)(x^7)/7+1/(5!)(x^11)/11+...)|_0^0.01

When we plug in zero for x, all the terms will disappear. So all you have to do is plug in 0.01 for x out to however many terms you want.

Hope this helps!