How do you use DeMoivre's theorem to simplify #(2+2i)^6#?
1 Answer
Explanation:
Before applying
#color(blue)"De Moivre's theorem"# we requireto convert the complex number into trigonometric form.To convert from
#color(blue)"complex to trigonometric form"#
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(z=x+yi=r(costheta+isintheta))color(white)(a/a)|)))" where"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|)))" and " color(red)(|bar(ul(color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|)))# For 2 + 2i , we have x = 2 and y = 2
#rArrr=sqrt(2^2+2^2)=sqrt8=2sqrt2# Now 2 + 2i is in the 1st quadrant and so we must ensure that
#theta# is in the 1st quadrant.
#rArrtheta=tan^-1(2/2)-tan^-1(1)=pi/4" in 1st quadrant"#
#rArr2+2i=2sqrt2(cos(pi/4)+isin(pi/4))color(blue)" in trig form"#
#color(blue)"DeMoivre's theorem"# states that.
#color(red)(|bar(ul(color(white)(a/a)color(black)((r(costheta+isintheta))^n=r^n(cos(ntheta)+isin(ntheta)))|)))ninQQ#
#rArr(2sqrt2(cos(pi/4)+isin(pi/4)))^6=#
#=512(cos((3pi)/2)+isin((3pi)/2))#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(cos((3pi)/2)=0" and " sin((3pi)/2)=-1)color(white)(a/a)|)))#
#rArr512(cos((3pi)/2)+isin((3pi)/2))=512(0-i)#
#rArr(2+2i)^6=color(red)(|bar(ul(color(white)(a/a)color(black)(-512i)color(white)(a/a)|)))#