How do you use Heron's formula to find the area of a triangle with sides of lengths #2 #, #5 #, and #5 #?

1 Answer
Mar 26, 2016

#2sqrt6#

Explanation:

Use the Heron's formula

#color(blue)(sqrt(s(s-a)(s-b)(s-c))#

Where

#color(red)(a,b,c=sides,s=(a+b+c)/(2)#

#s# is also defined as the Semi-perimeter of the #triangle#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Values

#color(orange)(a=2#

#color(orange)(b=5#

#color(orange)(c=5#

#color(orange)(s=(2+5+5)/2=12/2=6#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Start to solve it

#rarrsqrt(6(6-2)(6-5)(6-5))#

#rarrsqrt(6(4)(1)(1))#

#rarrsqrt(6(4))#

#color(green)(rArrsqrt(24)=sqrt(4*6)=2sqrt6~~4.899#