How do you use logarithmic differentiation to find the derivative of #y=(tanx)^(1/x)#?

1 Answer
Mar 27, 2015

#y=(tanx)^(1/x)#

#lny=ln((tanx)^(1/x))#

#lny=1/xln(tanx)# Differentiate implicitly.

#1/y (dy)/(dx)=-1/x^2ln(tan(x))+1/x(1/tan(x) sec^2(x))#

At this point it's nice to simplify using #1/tanx=cotx# and #cotx * secx=cscx#

So,
#1/y (dy)/(dx)=-1/x^2ln(tan(x))+1/x(cscx secx)#

# (dy)/(dx)=y(-1/x^2ln(tan(x))+1/x(cscx secx))#

# (dy)/(dx) =( tanx)^(1/x)(-1/x^2ln(tan(x))+1/x(cscx secx))# #" "# (Not pretty, but correct.)

# (dy)/(dx) =( tanx)^(1/x)(x(cscx secx)-ln(tan(x)))*1/x^2# #" "# (Isn't a whole lot better.)