How do you use Pascal's Triangle to expand #(x - 2)^4#?

1 Answer
Feb 27, 2016

#x^4-8x^3+24x^2-32x+16#

Explanation:

Given:#" "(x-2)^(color(red)(4)#

Tony B

Use the line marked #color(red)(x^4)#

Notice there are a count of 5 numbers. This is the number of terms needed
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("How Pascal's Triangle is used in this context")#

#color(brown)("Suppose we had "(x+y)^4#

#color(brown)("Without using the numbers in the triangle our 5 terms would be:")#

#color(brown)(x^4y^0 + x^3y^1+x^2y^2+x^1y^3+x^0y^4)#

#color(green)("Now we put in the numbers from the triangle:")#

#color(brown)((color(green)(1)xxx^4y^0) +(color(green)(4)xx x^3y^1)+(color(green)(6)xxx^2y^2)+(color(green)(4)xxx^1y^3)(color(green)(1)xxx^0y^4))#

Remember that #x^0=1" ; "y^0=1#

#(x^4) +(4 x^3y)+(6x^2y^2)+(4xy^3)+(y^4)#

But from the question #color(blue)(y=-2)# giving:

#color(brown)((x^4) +(4 x^3xxcolor(blue)((-2)))+(6x^2xxcolor(blue)((-2))^2)+(4x xxcolor(blue)((-2))^3)+color(blue)((-2))^4)#

#(x^4) +(-8 x^3)+(24x^2)+(-32x)+16#

#x^4-8x^3+24x^2-32x+16#