We use a slightly modified table when the coefficient of #x# does not equal #1#. Note the extra lines.

**Step 1.** Write only the coefficients of #x# in the dividend inside an upside-down division symbol.

#|3" "4" "-7" " " " "1#

#|color(white)(1)#

#stackrel("——————————————)#

**Step 2.** Put the divisor at the left.

#" "" "|3" "4" "-7" " " " "1#

#" "color(red)(2)color(white)(1)|#

#" "stackrel("——————————————)#

**Step 3.** Write the coefficient of #x# below the division line

#" "" "|3" "4" "-7" " " " "1#

#" "2|" "color(white)(1)2 " "" "4" "-2#

#" "stackrel("——————————————)#

#" "color(white)(1)|#

#color(red)(/3)color(white)(1)|#

**Step 4.** Drop the first coefficient of the dividend below the division symbol.

#" "" "|3" "4" "-7" " " " "1#

#" "2|" "color(white)(1)2 " "" "4" "-2#

#" "stackrel("——————————————)#

#" "color(white)(1)|color(red)(3)#

#/3color(white)(1)|#

**Step 5.** Divide the dropped value by the coefficient of #x# and place the result in the row below.

#" "" "|3" "4" "-7" " " " "1#

#" "2|" "color(white)(1)2 " "" "4" "-2#

#" "stackrel("——————————————)#

#" "" "|3#

#/3color(white)(1)|color(red)(1)#

**Step 6.** Multiply the result by the constant, and put the product in the next column.

#" "" "|3" "4" "-7" " " " "1#

#" "2|" "color(white)(1)color(red)(2)#

#" "stackrel("——————————————)#

#" "" "|3#

#/3color(white)(1)|1#

**Step 7.** Add down the column.

#" "" "|3" "4" "-7" " " " "1#

#" "2|" "color(white)(1)2#

#" "stackrel("——————————————)#

#" "" "|3" "color(red)(6)#

#/3color(white)(1)|1#

**Step 8.** Repeat Steps 5, 6, and 7 until you can go no farther.

#" "" "|3" "4" "-7" " " " "1#

#" "2|" "color(white)(1)2 " "" "4" "-2#

#" "stackrel("——————————————)#

#" "" "|3" "6" "-3" "color(red)(-1)#

#/3color(white)(1)|1" "2" "-1#

#(3x^3 +4x^2-7x+6)/(3x-2) = x^2+2x-1-1/(3x-2)#

**Check:**

#(3x-2)( x^2+2x-1-1/(3x-2)) = (3x-2)(x^2+2x-1)-1#

#= 3x^3+6x^2-3x-2x^2-4x+2-1 = 3x^3+4x^2-7x +1#